Hermitian Jacobi forms and $U(p)$ congruences
نویسندگان
چکیده
منابع مشابه
On Congruences of Jacobi Forms
We consider congruences and filtrations of Jacobi forms. More specifically, we extend Tate’s theory of theta cycles to Jacobi forms, which allows us to prove a criterion for an analog of Atkin’s U-operator applied to a Jacobi form to be nonzero modulo a prime.
متن کاملCongruences via Modular Forms
We prove two congruences for the coefficients of power series expansions in t of modular forms where t is a modular function. As a result, we settle two recent conjectures of Chan, Cooper and Sica. Additionally, we provide tables of congruences for numbers which appear in similar power series expansions and in the study of integral solutions of Apéry-like differential equations.
متن کاملHigher congruences between modular forms
It is well-known that two modular forms on the same congruence subgroup and of the same weight, with coefficients in the integer ring of a number field, are congruent modulo a prime ideal in this integer ring, if the first B coefficients of the forms are congruent modulo this prime ideal, where B is an effective bound depending only on the congruence subgroup and the weight of the forms. In thi...
متن کاملSignatures of Hermitian Forms
Signatures of quadratic forms over formally real fields have been generalized in [BP2] to hermitian forms over central simple algebras with involution over such fields. This was achieved by means of an application of Morita theory and a reduction to the quadratic form case. A priori, signatures of hermitian forms can only be defined up to sign, i.e., a canonical definition of signature is not p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2015
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2015-12562-2